Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38529485

RESUMO

The social dynamics of vocal behavior has major implications for social development in humans. We asked whether early life damage to the anterior cingulate cortex (ACC), which is closely associated with socioemotional regulation more broadly, impacts the normal development of vocal expression. The common marmoset provides a unique opportunity to study the developmental trajectory of vocal behavior, and to track the consequences of early brain damage on aspects of social vocalizations. We created ACC lesions in neonatal marmosets and compared their pattern of vocalization to that of age-matched controls throughout the first 6 weeks of life. We found that while early life ACC lesions had little influence on the production of vocal calls, developmental changes to the quality of social contact calls and their associated syntactical and acoustic characteristics were compromised. These animals made fewer social contact calls, and when they did, they were short, loud and monotonic. We further determined that damage to ACC in infancy results in a permanent alteration in downstream brain areas known to be involved in social vocalizations, such as the amygdala and periaqueductal gray. Namely, in the adult, these structures exhibited diminished GABA-immunoreactivity relative to control animals, likely reflecting disruption of the normal inhibitory balance following ACC deafferentation. Together, these data indicate that the normal development of social vocal behavior depends on the ACC and its interaction with other areas in the vocal network during early life.

2.
Neurooncol Adv ; 5(1): vdad108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781088

RESUMO

Background: Hypersomnolence is a common and disruptive side effect of cranial radiotherapy and is associated with fatigue and disturbances in mood and cognition in primary brain tumor (PBT) patients. The biological underpinnings of this effect are not understood. Our laboratory has previously found that the presence of a single nucleotide polymorphism (rs934945, G-E mutation) in the PERIOD2 (PER2) clock gene was associated with a decreased likelihood of fatigue in PBT patients. Here, we aim to understand the effects of PER2 polymorphism on radiation susceptibility within a murine model of cranial-irradiation-induced hypersomnolence (C-RIH). Methods: Male and female transgenic mice were generated using CRISPR-Cas9, replacing the endogenous mouse PER2:CRY1 binding domain with its human isoform with (hE1244 KI) or without the SNP rs934945 (hG1244 KI). Activity and sleep were monitored continuously 10 days before and after cranial irradiation (whole brain, 15Gy, single fraction). Behavioral assessments measuring anxiety, depression, and working memory were used to assess mood and cognitive changes 2 months postradiation. Results: During their active phase, hE1244 knock-ins (KIs) had less radiation-induced suppression of activity relative to hG1244 KIs and female hE1244 KIs saw a reduction of hypersomnolence over 10 days. hE1244 KIs displayed less anxiety behavior and were more ambulatory within all behavioral tests. Conclusions: The PER2 rs934945 polymorphism had long-lasting behavioral effects associated with radiation toxicity, particularly in sleep in females and the activity of all animals. Our findings shed light on biological mechanisms underlying C-RIH.

3.
Elife ; 122023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36951911

RESUMO

Recently developed methods for video analysis, especially models for pose estimation and behavior classification, are transforming behavioral quantification to be more precise, scalable, and reproducible in fields such as neuroscience and ethology. These tools overcome long-standing limitations of manual scoring of video frames and traditional 'center of mass' tracking algorithms to enable video analysis at scale. The expansion of open-source tools for video acquisition and analysis has led to new experimental approaches to understand behavior. Here, we review currently available open-source tools for video analysis and discuss how to set up these methods for labs new to video recording. We also discuss best practices for developing and using video analysis methods, including community-wide standards and critical needs for the open sharing of datasets and code, more widespread comparisons of video analysis methods, and better documentation for these methods especially for new users. We encourage broader adoption and continued development of these tools, which have tremendous potential for accelerating scientific progress in understanding the brain and behavior.


Assuntos
Algoritmos , Software , Animais , Comportamento Animal , Etologia , Gravação em Vídeo
4.
Horm Behav ; 66(1): 159-68, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24666779

RESUMO

This article is part of a Special Issue "Energy Balance". Both the light-dark cycle and the timing of food intake can entrain circadian rhythms. Entrainment to food is mediated by a food entrainable circadian oscillator (FEO) that is formally and mechanistically separable from the hypothalamic light-entrainable oscillator. This experiment examined whether seasonal changes in day length affect the function of the FEO in male Siberian hamsters (Phodopus sungorus). Hamsters housed in long (LD; 15 h light/day) or short (SD; 9h light/day) photoperiods were subjected to a timed-feeding schedule for 10 days, during which food was available only during a 5h interval of the light phase. Running wheel activity occurring within a 3h window immediately prior to actual or anticipated food delivery was operationally-defined as food anticipatory activity (FAA). After the timed-feeding interval, hamsters were fed ad libitum, and FAA was assessed 2 and 7 days later via probe trials of total food deprivation. During timed-feeding, all hamsters exhibited increases FAA, but FAA emerged more rapidly in SD; in probe trials, FAA was greater in magnitude and persistence in SD. Gonadectomy in LD did not induce the SD-like FAA phenotype, indicating that withdrawal of gonadal hormones is not sufficient to mediate the effects of photoperiod on FAA. Entrainment of the circadian system to light markedly affects the functional output of the FEO via gonadal hormone-independent mechanisms. Rapid emergence and persistent expression of FAA in SD may reflect a seasonal adaptation that directs behavior toward sources of nutrition with high temporal precision at times of year when food is scarce.


Assuntos
Adaptação Fisiológica/fisiologia , Ritmo Circadiano/fisiologia , Cricetinae/fisiologia , Comportamento Alimentar/fisiologia , Hormônios Gonadais/fisiologia , Atividade Motora/fisiologia , Fotoperíodo , Animais , Castração , Ingestão de Alimentos/fisiologia , Privação de Alimentos/fisiologia , Hormônios Gonadais/metabolismo , Masculino , Phodopus/fisiologia
5.
Brain Behav Immun ; 36: 61-70, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24145050

RESUMO

Annual rhythms in morbidity and mortality are well-documented, and host defense mechanisms undergo marked seasonal phenotypic change. Siberian hamsters (Phodopus sungorus) exhibit striking immunological plasticity following adaptation to short winter day lengths (SD), including increases in blood leukocytes and in the magnitude of T cell-mediated immune responses. Thyroid hormone (TH) signaling is rate-limited by tissue-level expression of iodothyronine deiodinase types II and III (dio2, dio3), and dio2/dio3 expression in the central nervous system gate TH-dependent transduction of photoperiod information into the neuroendocrine system. THs are also potent immunomodulators, but their role in seasonal immunobiology remains unexamined. Here we report that photoperiod-driven changes in triiodothyronine (T3) signaling mediate seasonal changes in multiple aspects of immune function. Transfer from long days (LD) to SD inhibited leukocyte dio3 expression, which increased cellular T4→T3 catabolism. T3 was preferentially localized in the lymphocyte cytoplasm, consistent with a non-nuclear role of T3 in lymphoid cell differentiation and maturation. Exposure to SD upregulated leukocyte DNA methyltransferase expression and markedly increased DNA methylation in the dio3 proximal promoter region. Lastly, to bypass low endogenous T3 biosynthesis in LD lymphocytes, LD hamsters were treated with T3, which enhanced T cell-dependent delayed-type hypersensitivity inflammatory responses and blood leukocyte concentrations in a dose-dependent manner, mimicking effects of SD on these immunophenotypes. T3 signaling represents a novel mechanism by which environmental day length cues impact the immune system: changes in day length alter lymphoid cell T3-signaling via epigenetic transcriptional control of dio3 expression.


Assuntos
Ritmo Circadiano/imunologia , Iodeto Peroxidase/metabolismo , Leucócitos/enzimologia , Tiroxina/metabolismo , Tri-Iodotironina/metabolismo , Animais , Cricetinae , Metilação de DNA , Feminino , Iodeto Peroxidase/genética , Leucócitos/metabolismo , Masculino , Phodopus , Fotoperíodo , Estações do Ano
6.
Brain Behav Immun ; 32: 94-104, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23474187

RESUMO

The immune system is under strong circadian control, and circadian desynchrony is a risk factor for metabolic disorders, inflammatory responses and cancer. Signaling pathways that maintain circadian rhythms (CRs) in immune function in vivo, and the mechanisms by which circadian desynchrony impairs immune function, remain to be fully identified. These experiments tested the hypothesis that the hypothalamic circadian pacemaker in the suprachiasmatic nucleus (SCN) drives CRs in the immune system, using a non-invasive model of SCN circadian arrhythmia. Robust CRs in blood leukocyte trafficking, with a peak during the early light phase (ZT4) and nadir in the early dark phase (ZT18), were absent in arrhythmic hamsters, as were CRs in spleen clock gene (per1, bmal1) expression, indicating that a functional pacemaker in the SCN is required for the generation of CRs in leukocyte trafficking and for driving peripheral clocks in secondary lymphoid organs. Pinealectomy was without effect on CRs in leukocyte trafficking, but abolished CRs in spleen clock gene expression, indicating that nocturnal melatonin secretion is necessary for communicating circadian time information to the spleen. CRs in trafficking of antigen presenting cells (CD11c(+) dendritic cells) in the skin were abolished, and antigen-specific delayed-type hypersensitivity skin inflammatory responses were markedly impaired in arrhythmic hamsters. The SCN drives robust CRs in leukocyte trafficking and lymphoid clock gene expression; the latter of which is not expressed in the absence of melatonin. Robust entrainment of the circadian pacemaker provides a signal critical to diurnal rhythms in immunosurveilliance and optimal memory T-cell dependent immune responses.


Assuntos
Relógios Circadianos/imunologia , Dermatite/imunologia , Leucócitos/imunologia , Ciclos de Atividade/imunologia , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Cricetinae , DNA Complementar/biossíntese , DNA Complementar/genética , Escuridão , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/fisiologia , Feminino , Citometria de Fluxo , Expressão Gênica , Hidrocortisona/sangue , Hipersensibilidade Tardia/imunologia , Iluminação , Tecido Linfoide/imunologia , Tecido Linfoide/fisiologia , Masculino , Melatonina/farmacologia , Atividade Motora/fisiologia , Proteínas Circadianas Period , Phodopus , Glândula Pineal/fisiologia , Reação em Cadeia da Polimerase , RNA/biossíntese , RNA/isolamento & purificação , Baço/fisiologia , Estresse Psicológico/imunologia , Estresse Psicológico/psicologia
7.
Horm Behav ; 58(4): 647-52, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20600050

RESUMO

Animals living in temperate climates with predictable seasonal changes in food availability may use seasonal information to engage different metabolic strategies. Siberian hamsters decrease costs of thermoregulation during winter by reducing food intake and body mass in response to decreasing or short-day lengths (SD). These experiments examined whether SD reduction in food intake in hamsters is driven, at least in part, by altered behavioral responses to ghrelin, a gut-derived orexigenic peptide which induces food intake via NPY-dependent mechanisms. Relative to hamsters housed in long-day (LD) photoperiods, SD hamsters consumed less food in response to i.p. treatment with ghrelin across a range of doses from 0.03 to 3 mg/kg. To determine whether changes in photoperiod alter behavioral responses to ghrelin-induced activation of NPY neurons, c-Fos and NPY expression were quantified in the arcuate nucleus (ARC) via double-label fluorescent immunocytochemistry following i.p. treatment with 0.3 mg/kg ghrelin or saline. Ghrelin induced c-Fos immunoreactivity (-ir) in a greater proportion of NPY-ir neurons of LD relative to SD hamsters. In addition, following ghrelin treatment, a greater proportion of ARC c-Fos-ir neurons were identifiable as NPY-ir in LD relative to SD hamsters. Changes in day length markedly alter the behavioral response to ghrelin. The data also identify photoperiod-induced changes in the ability of ghrelin to activate ARC NPY neurons as a possible mechanism by which changes in day length alter food intake.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Grelina/farmacologia , Phodopus/fisiologia , Fotoperíodo , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Peso Corporal/efeitos dos fármacos , Ritmo Circadiano , Cricetinae , Ingestão de Alimentos/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Neuropeptídeo Y/metabolismo , Neuropeptídeos/farmacologia , Orexinas , Phodopus/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Estações do Ano
8.
Transplantation ; 86(7): 998-1001, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18852668

RESUMO

Small bowel transplantation is a successful treatment for irreversible intestinal failure. Acute cellular rejection (ACR) represents the major cause of graft loss. However, little is known regarding the mechanisms of ACR and no data exist on the genetic response occurring during ACR. We report a genetic expression profile determined using oligo-microarrays of the intestinal graft during an ACR episode. Mucosal biopsies were obtained from the graft at weeks 0, 1, 2, 3, 6, and 52 posttransplant. We observed a statistically significant increase in transcript levels from 51 genes between biopsy samples from before ACR compared with during ACR. Functional analysis of these genes revealed an interferon (IFN)-alpha signature associated with a type I IFN immune response from dendritic cells or association with cellular proliferation and division. These genetic data support that dendritic cell activation was ongoing during ACR and suggest that IFNalpha production as a potential immunosuppressive target for transplantation.


Assuntos
Perfilação da Expressão Gênica , Rejeição de Enxerto/genética , Interferon-alfa/genética , Intestino Delgado/transplante , Doença Aguda , Biópsia , Divisão Celular/genética , Células Dendríticas/imunologia , Células Dendríticas/patologia , Humanos , Mucosa Intestinal/patologia , Intestino Delgado/patologia , Regulação para Cima
9.
J Immunol ; 177(2): 1179-88, 2006 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16818776

RESUMO

Ab class (isotype) switching allows the humoral immune system to adaptively respond to different infectious organisms. Isotype switching occurs by intrachromosomal DNA recombination between switch (S) region sequences associated with C(H) region genes. Although isotype-specific transcription of unrearranged (germline) C(H) genes is required for switching, recent results suggest that isotype specificity is also determined by the sequences of downstream (acceptor) S regions. In the current study, we identify the histone methyltransferase Suv39h1 as a novel Salpha-specific factor that specifically increases IgA switching (Smu-Salpha recombination) in a transiently transfected plasmid S substrate, and demonstrate that this effect requires the histone methyltransferase activity of Suv39h1. Additionally, B cells from Suv39h1-deficient mice have an isotype-specific reduction in IgA switching with no effect on the level of germline Ialpha-Calpha transcripts. Taken together, our results suggest that Suv39h1 activity inhibits the activity of a sequence-specific DNA-binding protein that represses switch recombination to IgA.


Assuntos
Histona-Lisina N-Metiltransferase/fisiologia , Imunoglobulina A/genética , Switching de Imunoglobulina , Metiltransferases/fisiologia , Recombinação Genética , Proteínas Repressoras/fisiologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Sítios de Ligação , Células Cultivadas , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Imunoglobulina A/metabolismo , Metiltransferases/deficiência , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição PAX5/metabolismo , Plasmídeos , Proteínas Metiltransferases , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
10.
Pancreas ; 31(4): 373-9, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16258373

RESUMO

OBJECTIVES: RNA interference as mediated by short-interfering RNA (siRNA) offers a nonviral means to silence genes in tissue; however, few data exist about gene therapy using siRNA in pancreas tissue. To determine if siRNA treatment could silence an endogenous gene in pancreatic islets, we developed a murine model using the endocrine pancreas. METHODS: The insulin 2 (Ins2) gene was targeted with siRNA, and quantitative RT-PCR, fluorescent microscopy, and FACS were used to measure transcript levels and siRNA cellular uptake and transfection efficiency. Isolated pancreatic islets were transfected with siRNA in vitro using a liposomal delivery method in a dose titration (50-400 nM) or pooled from BALB/c mice having received siRNA (100 microg) via hydrodynamic tail vein injection. RESULTS: The Ins2 transcript level was significantly reduced by 55% in vitro with FACS data showing a transfection efficiency over 45% with the 400 nM concentration. In vivo delivery of siRNA to pancreatic islets revealed a 33% reduction in Ins2 mRNA levels, although siRNA was able to be detected in 19% of isolated islet cells. CONCLUSION: We have successfully used RNA interference to silence an endogenous tissue-specific gene (Ins2) in pancreatic islets when transfected in vitro or administered in vivo.


Assuntos
Inativação Gênica , Ilhotas Pancreáticas/metabolismo , RNA Interferente Pequeno/farmacologia , Animais , Terapia Genética , Insulina/genética , Camundongos , Camundongos Endogâmicos BALB C
11.
EMBO J ; 22(21): 5893-903, 2003 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-14592986

RESUMO

Nucleotide substitutions are found in recombined Ig switch (S) regions and also in unrecombined (germline, GL) Smicro segments in activated splenic B cells. Herein we examine whether mutations are also introduced into the downstream acceptor S regions prior to switch recombination, but find very few mutations in GL Sgamma3 and Sgamma1 regions in activated B cells. These data suggest that switch recombination initiates in the Smicro segment and secondarily involves the downstream acceptor S region. Furthermore, the pattern and specificity of mutations in GL and recombined Smicro segments differ, suggesting different repair mechanisms. Mutations in recombined Smicro regions show a strong bias toward G/C base pairs and WRCY/RGYW hotspots, whereas mutations introduced into the GL Smicro do not. Additionally, induction conditions affect mutation specificity within the GL Smicro segment. Mutations are most frequent near the S-S junctions and decrease rapidly with distance from the junction. Finally, we find that mice expressing a transgene for terminal deoxynucleotidyl transferase (TdT) have nucleotide insertions at S-S junctions, indicating that the recombining DNA ends are accessible to end-processing enzyme activities.


Assuntos
Proteínas de Ligação a DNA , Região de Troca de Imunoglobulinas , Mutação , Recombinação Genética , Animais , Linfócitos B/imunologia , Composição de Bases , Sequência de Bases , DNA/química , DNA/genética , DNA/metabolismo , DNA Nucleotidilexotransferase/genética , DNA Nucleotidilexotransferase/metabolismo , Reparo do DNA , Ativação Linfocitária , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Proteína 2 Homóloga a MutS , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...